Distance spectral radius of series-reduced trees with parameters

نویسندگان

چکیده

For a connected graph G , the distance matrix is real-symmetric where ( u v )-entry between vertex and in . The spectral radius of largest eigenvalue A series-reduced tree with at least one internal all vertices having degree three. Those trees that maximize are determined over fixed order maximum number leaves, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Distance Spectral Radius of Trees with Fixed Maximum Degree∗

Abstract. Distance energy is a newly introduced molecular graph-based analog of the total π-electron energy, and it is defined as the sum of the absolute eigenvalues of the molecular distance matrix. For trees and unicyclic graphs, distance energy is equal to the doubled value of the distance spectral radius. In this paper, we introduce a general transformation that increases the distance spect...

متن کامل

The integral trees with spectral radius 3

There are 11 integral trees with largest eigenvalue 3.

متن کامل

Distance spectral radius of trees with fixed number of pendent vertices

Article history: Received 16 October 2012 Accepted 25 June 2013 Available online 12 July 2013 Submitted by R. Brualdi

متن کامل

On extremal trees with respect to their terminal distance spectral radius

Let G be a simple connected graph. The terminal distance matrix of G is the distance matrix between all pendant vertices of G. In this paper, we introduce some general transformations that increase the terminal distance spectral radius of a connected graph and characterize the extremal trees with respect to the terminal distance spectral radius among all trees with a fixed number of pendant ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rairo-operations Research

سال: 2021

ISSN: ['1290-3868', '0399-0559']

DOI: https://doi.org/10.1051/ro/2020093